Mesenchymal Stem Cell–Derived Small Extracellular Vesicles Promote Neuroprotection in Rodent Models of Glaucoma
نویسندگان
چکیده
Purpose To investigate the benefit of bone marrow mesenchymal stem cell (BMSC)-derived small extracellular vesicles (sEV) as an intravitreal (ivit) therapy in two rat models of glaucoma and to determine and identify candidate miRNA involved in the mechanism. Methods sEV were isolated from human BMSC and fibroblasts and ivit injected into adult rats after induction of elevated IOP. IOP was elevated using either intracameral injection of microbeads or laser photocoagulation of circumferential limbal vessels and the trabecular meshwork. Retinal nerve fiber layer (RNFL) thickness was measured using optical coherence tomography, positive scotopic threshold response (pSTR) recorded using ERG, and RNA binding protein with multiple splicing (RBPMS+) retinal ganglion cell (RGC) counted using retinal wholemounts. sEV miRNA were sequenced using RNAseq. Results sEV isolated from BMSC promoted significant neuroprotection of RGC while preventing RNFL degenerative thinning and loss of pSTR. sEV proved therapeutically efficacious when ivit injected every week or every month, but ineffective with longer delays between treatments. Knockdown of Argonaute2 (AGO2), a protein critical for miRNA function and packing into sEV prior to sEV isolation, significantly attenuated the above effects. Addition of BMSC sEV (but not fibroblast sEV) reduced death of cultured purified RGC. RNAseq identified 43 miRNA upregulated in BMSC sEV in comparison to fibroblast sEV, which yielded no neuroprotective effects. Conclusions Injection of BMSC-derived sEV into the vitreous provided significant therapeutic benefit to glaucomatous eyes. The neuroprotective effect of sEV, at least partially, may be explained by direct action on RGC through miRNA-dependent mechanisms.
منابع مشابه
Application of extracellular vesicles in the treatment of inflammatory bowel disease
Introduction: Inflammatory bowel disease(IBD) is caused by genetic, environmental, microbial and immune factors. IBD has two primary forms: Ulcerative colitis and Crohn´s disease. The incidence of IBD has significantly increased over the last few decades. Given that patients have poor response to drug treatments or are resistant to drug therapies, new therapies are needed for gastrointestinal i...
متن کاملExtracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملExtracellular Vesicles in Regenerative Medicine, a Brief Review
Extracellular vesicles were initially known as cellular waste carriers, while recent studies demonstrate that extracellular vesicles play important biological roles in all aspects of life-from single cells to mammalians. Their pathophysiological roles in some diseases like cancer are being decoded. Extracellular vesicles are divided into some classes and there are different strategies to isolat...
متن کاملExosomes: Mediators of Immune Regulation
Extracellular Vesicles, including exosomes, are small membrane fragments released from many cell types, like Mesenchymal Stem Cells (MSCs). They were recognized as a mechanism of intercellular communication. They can transfer proteins, lipids and nucleic acids to other cells. Thus, they have many physiological (angiogenesis, coagulation and tissue repair, etc.) and pathological (e.g. in autoimm...
متن کاملExtracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression.
UNLABELLED Although the initial concepts of stem cell therapy aimed at replacing lost tissue, more recent evidence has suggested that stem and progenitor cells alike promote postischemic neurological recovery by secreted factors that restore the injured brain's capacity to reshape. Specifically, extracellular vesicles (EVs) derived from stem cells such as exosomes have recently been suggested t...
متن کامل